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adjacent to a body of arbitrary shape in a 
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The problems of steady film condensation and boiling over a body of arbitrary shape 
embedded in a porous medium have been attacked by means of the similarity 
transformation. A new similarity variable is suggested to solve the problems once for all 
possible two-dimensional and axisymmetric bodies of arbitrary geometrical configuration. 
Upon transforming the governing equations and boundary conditions using the similarity 
variables, the resulting set of equations transforms into that obtained for the case of a 
vertical flat plate. Thus, the numerical values furnished by Parmentier and Cheng for a flat 
surface are readily applicable to two-phase flows over two-dimensional and axisymmetric 
bodies of arbitrary shape. 
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Introduction 

The study of two-phase flow in a porous medium involving 
phase change has a number of important applications in both 
engineering and the earth sciences. Parmentier 1 analysed film 
boiling on a heated vertical surface in a porous medium to 
investigate the movement of ground water in permeable rock 
surrounding igneous intrusions near the surface of the earth. 
The problem of film condensation, which has much in common 
with that of film boiling, was treated by Cheng 2 in view of its 
applications in geothermal energy utilization. These studies, 
however, are restricted to the case of a simple geometry, namely: 
a flat surface (or a cone). 

The present paper proposes a general similarity 
transformation procedure appropriate for the problems of 
steady film boiling and condensation over a two-dimensional or 
axisymmetric body of arbitrary shape embedded in a porous 
medium. A transformed variable similar to the one proposed by 
Merkin a for single-phase free convection in a porous medium, 
and subsequently extended by the authors* to the case of free 
convection over a nonisothermal body of arbitrary shape, is 
introduced to account for possible geometric effects on the 
boundary layer length scale. It is shown that, by virtue of this 
transformation, the governing equations and boundary 
conditions for bodies of arbitrary shape can be reduced to those 
for a vertical flat plate, which have already been solved by 
Parmentier 1 and Cheng 2. 

Analysis 

In the previous studies 1,2, certain simplifying assumptions were 
introduced to make the problems tractable within the scope of 
the classical boundary layer concept. The same assumptions will 
also be adopted in the present analysis. 

Upon projecting possible phase change paths associated with 
steady film boiling into the pressure-temperature space, 
Parmentier justified the assumption that a phase boundary 
occurs across which liquid (vapour) is transformed directly to 
vapour (liquid) without the formation of a mixed phase region. 
Thus, the liquid and vapour are separated by a distinct 
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boundary with no intermediate two-phase zone. It is also 
assumed that the properties within a film adjacent to the body 
are constant, while the fluid outside the film is at its saturation 
temperature. Moreover, the film is assumed to be sufficiently 
thin so that the boundary layer approximations may be 
exploited. 

Since the single-phase boundary layer equations can be 
applied separately to the vapour and the liquid, the problems of 
film boiling and condensation need be treated only once for both 
(as we interchange the roles of the liquid and the vapour). Thus, 
we direct our attention to the problem of film condensation over 
two-dimensional and axisymmetric bodies of arbitrary 
geometrical configuration. (For the case of subcooled film 
boiling, the compressibility of the surrounding subcooled liquid 
must be taken into consideration as in the analysis of Cheng and 
Verma s, since the effect of free convection on heat transfer rate 
may no longer be negligible.) 

The physical model and boundary layer coordinates (x, y) are 
indicated in Fig 1. The body under consideration may be either 
plane or axisymmetric, and its geometry is specified by the 
function r(x). The cooled body, with surface temperature Tw, is 
embedded in a porous medium filled with a dry saturated 
vapour at a saturation temperature T, (corresponding to its 
pressure). Thus, both a liquid and vapour layers develop 
simultaneously as steady condensation takes place over the 
isothermal wall. 

The set of the governing equations--namely, the continuity 
equation, the Darcy's law and the energy equation--may be 
given for each phase as follows. 
For  the liquid (condensate): 

~x r*U + r* ~y v = O (1) 

K 
u = - -  0x (2) V 
and 

OT OT O2T uTx+v--- (3) Oy -- o~ OY z 

For the vapour: 
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where 

( 1 for plane flow 
r *  

(r (x)  for axisymmetric flow (7) 

and gx=g[, (drVF 
j (8) 

The boundary and matching conditions are as follows. 
At the wall surface (y= 0): 

v=0,  T =  T w (9a,b) 

At the vapour-liquid interface (y=6):  

T =  r~ (lOa) 

d6 
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Figure 1 Physical model and coordinates 

In the preceding equations, u and v are the Darcian velocity 
components in the x and y directions while T is the local 
temperature. The tangential component of the gravitational 
acceleration g is indicated by gx, which is related to the local 
surface inclination through Eq (8). Furthermore, K is the 
permeability, v the kinematic viscosity, a the equivalent thermal 
diffusivity, and k the equivalent thermal conductivity. The 
subscript G denotes the quantities associated with the ambient 
vapour phase, while no subscript is assigned for the liquid phase. 
hL~ is the latent heat of vapourization. 

Eqs (5) and (6) for the saturated vapour obviously satisfy 
Darcy's law and the energy conservation principle, respectively. 
Therefore, the differential equations (1), (3) and (4) must be 
solved with the Darcy's equation (2) for the condensate and the 
conditions given by Eqs (9a) to (10c). Note that the problem is 
not overspecified, since the film thickness 6 is unknown. 

Let us introduce the stream function ¢J such that the 
continuity equation (I) may automatically be satisfied: 

1 dCJ 
u= (lla) 

r* dy 

v r* dx (lib) 

Merkin 3 introduced a similarity transformation for the single- 
phase problem of free convection in a porous medium. His 
transformation has been generalized by the authors 4 for the case 
of a nonisothermal body of arbitrary shape. These 
transformations may be extended to the present two-phase flow 
problem as 

~k = ar* (Rai l )  1/2f(rl) (12a) 

T -  Ts=O(tl)(T w -  Ts) (12b) 

rl = Y (Rax/i)ll2 (I 2c) 
X 

where 

K g x x  
Rax = (13a) 

V~ 

J'o gx r*2 dx l (x)= ~ (13b) 

Rax is the local Rayleigh number, while ~/ is the proposed 
similarity variable. The function I as defined by Eq (13b) adjusts 
the scale in the normal direction according to a given body 
geometry. 

In terms of these transformed variables, the Darcian velocities 
in the condensate layer are 

u = -  R a x f '  (14a) 
X 

and 

I (  dlngxr* 1\ ' 1 q d l n x  j j v = -  (Ra~/l) 1/2 I ~ ] q f  + } f /  (lab) 

N o t a t i o n  

f Dimensionless stream function 
g Gravitational acceleration 
hL~ Latent heat of vapourization 
I Function associated with a body geometry 
k Thermal conductivity 
K Permeability 
Nux Local Nusselt number 
qw Local surface heat flux 
r Function representing wall geometry 
r* 1 for plane flow and r for axisymmetric flow 
Rax Local Rayleigh number 
T Temperature 

u, v Darcian velocity components 
x, y Boundary layer coordinates 

Thermal diffusivity 
? Ratio of a horizontal axis to a vertical axis 
r/ Similarity variable 
0 Dimensionless temperature 
v Kinematic viscosity 
p Density 
0 Stream function 

Subscripts 
G Vapour 
w Wall 
r Reference 
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where the primes are the differentiation with respect to 17. 
Substitution of Eq (14a) into Eq (2) yields 

f ' =  1 (15a) 

This may readily be integrated as 

f=17 (15b) 

using the boundary condition 

f(0) = 0 (15c) 

which is equivalent to Eq (9a) with (14b) substituted. 
The preceding results may be substituted into the energy 

equation (3). After a considerable manipulation, we obtain a 
remarkably simple expression as 

0" +½170'= 0 (16) 

The foregoing equation is subject to the boundary conditions, 
namely: 

0(0) = 1 (17a) 

0(176 ) = 0 (17b) 

which are equivalent to Eqs (9b) and (10a), respectively. The 
preceding equation (16) with Eqs (17) has the exact solution 
given by 

erf(17/2) 
0(17)= 1 (18a) 

erf(176/2) 

where 

6 
176 = -  (Rax/I) 1/2 (18b) 

X 

The unknown 176 (or 6) should be determined from the matching 
condition given by Eq (10c) which, after a considerable 
manipulation, reduces to 

k (T  s - Tw) 
Ja = -- - 176/20'(176) 

pghLG 
7~1/2 

= 176 exp(172/4) erf(17d2) (19) 
2 

where Ja is the Jacob number associated with the degree of 
subcooling. 

Once the temperature profile (given by Eq (18a)) is known in 
this way, the local Nusselt number of interest can be evaluated 
from 

qw x 
N u : ' - k ( T s _  Tw ~ -  O'(O)(Ra:,/l) 1/2 

(Rax/I) I/2 
(20) 

- ~1/2 erf(176/2) 

where qw is the local surface heat flux. 
Finally, let us consider the vapour phase. The continuity 

equation (4) may readily be integrated using the last matching 
condition given by Eq (10b). Hence, the velocity of the vapour 
moving towards the interface is given by 

p ~t (Ra~/i)l/2q6 (21) 
VG = 2pG X 

It is most interesting to note that the resulting equations (18a) 
and (19) are identical to those obtained by Cheng 2 for a flat 
surface. Thus, the numerical values of 176 as a function of Ja 
furnished by Cheng (solving Eq (19)) are directly available for all 
possible two-dimensional and axisymmetric bodies. 

Results and discussion 

The characteristic equation (19) indicates that an increase in Ja 
(degree of subcooling) results in thickening of the film. Of special 

interest is the limiting case of 176---,0, where 

176 = (2Ja) 1/2 

The results of numerical computations are presented in Cheng's 
paper 2 in terms of Nux and Ja. Cheng also established an 
approximate expression for Nu x by examining his numerical 
results. This useful approximate expression may be generalized 
to the present case of arbitrary geometrical configuration as 

{ 1 1 \  1/2 
( ax/,I 122) 

which is accurate to the fourth significant figure when compared 
with the exact solution. 

By virtue of the proposed transformation, the results on a 
vertical fiat plate can be translated to any particular two- 
dimensional or axisymmetric body of arbitrary shape. This can 
be done by evaluating the function I for the given geometry. For  
example, in the cases of flat plates, vertical cones, horizontal 
ellipses and ellipsoids (including a horizontal circular cylinder 
and a sphere), we evaluate I according to its definition given by 
Eq (13b) as 

1 for vertical plates 

3 for vertical cones pointing upward 

I 

(x/L,) s i n  ~b 

, (1 - c o s  ~b)(sin 2 ~b + 72 cos 2 q~)1/2 

for horizontal ellipses 

3(x/L,) sin 3 q5 

(cos 3 q~ - 3 cos ~b + 2)(sin 2 q~ +~,2 cos 2 ~b)1/2 

(23) 

where for ellipsoids 

q~ = sin - 1 (r(x)/yL,) (24a) 

and 

x / L , =  (sin 2 q~ +72 cos 2 q~)1/2 dq~ (24b) 

The upper (front) and lower (rear) stagnation points are 
located at q~=0 and n, respectively. The symbol L, denotes 
reference lengths such as a plate height and a vertical semi-axis 
of an ellipse or an ellipsoid, while 7 stands for the ratio of a 
horizontal axis to a vertical axis. 

Subsequently, the local surface heat flux may be given by 

(x /L, ) -  1/2 for vertical plates (25a) 

(x/3L,) -~/2 for vertical cones pointing upward(25b) 

sin 4~ 
q* = [(1 - c o s  q~)(sin 2 q~ +72 cos 2 ~b)] 1/2 

for horizontal ellipses (25c) 

sin2 4~ 

[(~ COS 3 q~ -- COS $ + 2)(sin2 q~ + 7 2 COS 2 ~b)] 1/2 

for ellipsoids (25d) 

where 

\ ( r s  - T w ) k J / \  pav J [ - 0'(0)] (25e) 

For  an illustrative purpose, the local surface heat flux 
distributions on ellipses and ellipsoids are presented in Figs 2(a) 
and 2(b) for three different values ofT, namely: 7=0.5, 1 and 2. 
Naturally, the distribution for a small 7 (ie a slender body) 
exhibits a pattern similar to that of a vertical flat plate (namely, 
q ,  oc x -  ~/2). The heat flux for a larger y ( > 1 ), on the other hand, 
increases away from the front stagnation point, and attains a 
maximum, as the flow accelerates due to a significant 
streamwise increase in the driving body force, namely 9x- But, as 
the boundary layer thickens further, it decreases downstream, 
resulting in a nonmonotonical variation of the surface heat flux. 
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Figure 2 Geometric effect on local heat fluxes: (a) horizontal 
ellipses; (b) ellipsoids 

It is also interesting to note that the q* values at ~b = n/2 are at 
the same level for all values of 7. The observed heat flux 
distributions have very much in common with those in the 
single-phase free convection*. 

C o n c l u d i n g  r e m a r k s  

A general similarity transformation has been suggested for the 
analysis of film condensation and boiling within a porous 

medium• A similarity variable, which also considers the 
geometric effect on the boundary layer length scale, was 
proposed to deal with a two-dimensional or  axisymmetric body 
of arbitrary geometrical configuration. As a result of this 
generalized similarity transformation, the governing equations, 
the boundary conditions and the matching conditions for a 
body of arbitrary geometry transform into those for a vertical 
fiat plate, which have been previously solved by Cheng. Thus, 
the numerical values furnished for a flat plate are directly 
available for any particular geometry of concern• 

Finally, it should be re-emphasized that the present results 
also apply to the case of film boiling simply by interchanging the 
roles of the vapour and the liquid, although the analysis was 
made specifically for the case of film condensation. 
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